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We describe our approach and progress in the development of high-order, finite volume discretiza-
tions of hyperbolic and elliptic systems on mapped grids. The motivation for this work is the need
for efficient numerical methods to solve continuum gyrokinetic Vlasov-Poisson equations, which
model the kinetic evolution of plasma and fields in the core and edge regions of tokamak fusion
reactors.

The numerical solution of gyrokinetic Vlasov-Poisson systems in tokamak geometries poses
several algorithmic challenges. A discretely conservative algorithm is needed that simultaneously
addresses issues of long-time fidelity, positivity, large anisotropies and high dimensionality. Our core
discretization is a new class of multidimensional higher-order finite volume methods (at least fourth-
order in space and time). The use of a finite volume method guarantees discrete conservation of the
distribution function, while the use of higher-order methods provides a substantial improvement in
the long-time accuracy over more traditional second-order finite-volume methods. In the discretiza-
tion of the hyperbolic gyrokinetic Vlasov equation, we combine a flux-corrected transport scheme
with a new limiter to maintain distribution function positivity and fourth-order accuracy, even
near smooth extrema. We employ a fourth-order discretization of the elliptic variable-coefficient
gyrokinetic Poisson equation.

We also generalize these semi-structured discretizations to mapped multiblock grids, thereby
achieving sufficient flexibility to accommodate tokamak edge geometries and the large anisotropies
aligned with the magnetic field. The hyperbolic and elliptic discretizations represented by the
gyrokinetic Vlasov and Poisson equations are treated using the same mapped grid, finite volume
formalism. The use of a mapped semi-structured computational grid offers additional advantages,
including the availability of multigrid-preconditioned elliptic solvers, natural extensions to local
mesh refinement, and efficient parallel implementation.
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